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Abstract

Large simple shear and torsion problems in plasticity have been the object of a large number of papers. Sophisticated
schemes have been developed (e.g. J. Appl. Mech. 50 (1983) 561) that overcome problems encountered (cf. e.g. J. Mech.
Phys. Solids 48 (2000) 2231; Int. J. Solids Struct. 37 (2000) 5037). This paper substantially uses the logarithmic rate
(Acta Mechanica 124 (1997a) 89), which is equally based on strong mathematical and physical principles and therefore
may contrast to classical approaches of cited kinds.

Stress responses to large simple shear and torsional deformations in elastoplastic bodies are studied by applying the
self-consistent kinematic hardening J,-flow model based on the logarithmic tensor rate, recently established by these
authors (Int. J. Plasticity 15 (1999) 479). The application of the logarithmic stress rate in the elastic rate equation of
hypoelastic type results in an exact finite hyperelastic solution in terms of Hencky’s logarithmic strain. The plastic
solution is composed of two parts: the back stress and the effective stress (the Kirchhoff stress reduced by the back
stress). It is shown that the evolution equation of the back stress with the logarithmic rate is integrable to deliver a
closed-form relation between the back stress and Hencky’s logarithmic strain and the current stress. Moreover, the
effective stress is shown to be governed by a first-order nonlinear ordinary differential equation with a small dimen-
sionless material parameter multiplying the highest derivative, for which the initial condition is related to the elastic—
plastic transition and prescribed in terms of the just-mentioned small parameter. A singular perturbation solution for
the just-mentioned equation is derived by utilizing the method of matched expansions. With the analytical solution
derived, it is possible to make a detailed study of the coupling effect of material properties, including the elastic, yielding
and hardening properties, on elastic—plastic responses. For the large deformations at issue, it is demonstrated that,
merely with three commonly known classical material constants, i.e., the elastic shear modulus, the initial tensile yield
stress and the hardening modulus, the simple kinematic hardening J,-flow model with the logarithmic rate may supply
satisfactory explanations for salient features of complex behaviour in experimental observation. © 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

To be consistent with objectivity requirements, objective Eulerian tensor rates, instead of the usual
material time derivative, should be used in formulating Eulerian rate type elasto-plasticity models at large
strain. There are a large variety of objective rates for consideration. Earlier, Zaremba—Jaumann rate was
given prominence. Since the unexpected shear oscillation phenomena with monotonically increasing
shearing strain were discovered by Lehmann (1972a,b), Dienes (1979) and Nagtegaal and de Jong (1982),
and other, a number of Eulerian rate type elasto-plasticity models at large strain have been proposed using
various definitions of stress rates different from Zaremba-Jaumann rate, such as Oldroyd rate, Cotter—
Rivlin rate, Truesdell rate, and Green—Naghdi rate, etc. (see, e.g., Neale, 1981; Nemat-Nasser, 1983, 1992
and the relevant references therein for details; and Agah-Tehrani et al., 1987). Usually, the large simple
shear problem, which characterizes the torsion problem of thin-walled cylindrical tubes in a sense of
suitable approximation as shown later, is used to test and justify reasonableness and applicability of various
models suggested, refer to, e.g., Lehmann (1972a,b), Bruhns (1973), Dienes (1979), Nagtegaal and de Jong
(1982), Lee et al. (1983), Dafalias (1983), Loret (1983), Atluri (1984), Johnson and Bammann (1984), Moss
(1984), Paulun and Pecherski (1985), Reed and Atluri (1985), Haupt and Tsakmakis (1986), Lubarda
(1988), Metzger and Dubey (1987), Zbib and Aifantis (1988a,b), Szabd and Balla (1989), Tsakmakis and
Haupt (1989), Yang et al. (1992), Xia and Ellyin (1993), Majors and Krempl (1994), Ning and Aifantis
(1994a,b), Cho and Dafalias (1996), Dafalias (2000), Kuroda (1997, 1999), Kuroda and Tvergaard (2000),
and many others. A detailed account of this aspect can also be found in Khan and Huang (1995).

However, Simo and Pister (1984) demonstrated that, with several commonly known stress rates, none of
the corresponding widely used hypoelastic equations (see Eq. (2.2) given in Section 2) intended for elastic
behaviour is exactly integrable to define an elastic relation, and any of them is thus incompatible with the
definition of elasticity, in particular, hyperelasticity. This fact means that any of the Eulerian rate elasto-
plasticity models with commonly known stress rates is self-inconsistent in the sense of characterizing elastic
behaviour in nonlinear range.

Very recently, in Bruhns et al. (1999) new Eulerian rate type elasto-plasticity models have been estab-
lished for elastic-perfect plasticity and elasto-plasticity with isotropic and kinematic hardening by utilizing
the logarithmic rate (see, e.g., Xiao et al., 1997a). These models are shown to be self-consistent in the
following sense: the hypoelastic equation intended for elastic behaviour is integrable to deliver an elastic, in
particular hyperelastic, relation. In Xiao et al. (1999), it is proved that, in order to fulfil the just-stated self-
consistency criterion, the logarithmic rate is the only choice among all objective corotational rates and
other well-known non-corotational rates.

As a typical example for large strain responses of the foregoing new models, in this article we study the
large torsion problem of elastoplastic thin-walled cylindrical tubes with fixed ends by applying the self-
consistent J,-flow model with the logarithmic rate. The large simple shear problem has been studied for
kinematic hardening elasto-plasticity models with various kinds of stress rates, as mentioned before.
However, only numerical results were supplied in the past, and it seems that satisfactory simulation of
experimental results has not been achieved by means of usually considered classical models with various
objective rates, as indicated by Reed and Atluri (1985). Here it will be seen that an analytical perturbation
solution is available for unlimited large strain. With this analytical solution, it is possible to make a detailed
study of the coupling effect of material properties, including the elastic, yielding and hardening properties,
on elastic—plastic responses. For the deformation response at issue, it will be demonstrated that, merely
with three commonly used classical material constants, i.e., the elastic shear modulus, the initial tensile
yield stress and the hardening modulus, the linear kinematic hardening J,-flow model with the logarithmic
rate may supply satisfactory explanation for salient features of complex behaviour in experimental ob-
servation.
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The main content of this article is arranged as follows. In Section 2, we supply the kinematic hardening
elastoplastic J,-flow model with the logarithmic rate. In Section 3, the large torsion problem of thin-walled
cylindrical tubes is reduced to the large simple shear problem of rectangular plates, and the kinematic
analysis of the two kinds of finite deformations is provided. In Section 4, the elastic solution and the
condition for elastic—plastic transition are determined. It is shown that the application of the logarithmic
stress rate in the elastic rate equation of hypoelastic type supplies an exact finite hyperelastic relation be-
tween Kirchhoff stress and Hencky’s logarithmic strain, which is exactly the one discussed and advocated
by Anand (1979, 1986). In Section 5, the plastic solution is determined, which is composed of two parts: the
back stress and the effective stress (the Kirchhoff stress deviator reduced by the back stress). It is shown that
the evolution equation of the back stress with the logarithmic rate is integrable to deliver an exact relation
between the back stress and Hencky’s logarithmic strain and the current stress. Moreover, the effective
stress is shown to be governed by a first-order nonlinear ordinary differential equation with a small di-
mensionless material parameter multiplying the highest derivative, for which the initial condition is re-
lated to the elastic—plastic transition and prescribed in terms of the just-mentioned small parameter. A
singular perturbation solution for the just-mentioned equation is derived by utilizing the method of mat-
ched expansions. Finally, in Section 6 the coupling effect of elastic, yielding and hardening properties is
studied in detail and explanations for relevant experimental results are made, by virtue of the analytical
solution obtained.

2. Kinematic hardening J,-flow model with logarithmic rate

Formulating Eulerian rate type elasto-plasticity models at finite strains, the additive decomposition of
the stretching or the Eulerian strain rate D, among other things, is usually postulated (see, e.g., Neale, 1981;
Nemat-Nasser, 1983, 1992; and Agah-Tehrani et al., 1987):

D = D° + DP. (2.1)
Then, the two parts D° and DP are, respectively, characterized by a rate type equation intended for elastic

behaviour and a rate type equation for plastic behaviour. Most often, especially for metals etc., the fol-
lowing hypoelastic formulation for D, the elastic part of D, is assumed:

1 o
_ Z “r ()L (2.2)

Here v and E are Poisson’s ratio and Young’s modulus in classical infinitesimal isotropic elasticity, I is the
second-order identity tensor, and t the Kirchhoff stress, i.e.

t=Jo (2.3)

D€

with ¢ the Cauchy stress and J the volume ratio or the mass density ratio related to the initial and current
states. Hence

J = detF, (2.4)

where F is the deformation gradient. In Eq. (2.2), t* is an objective rate of the stress z.
On the other hand, the associated plasticity and normality postulate together lead to the following flow
rule for the coupled elastic—plastic part, DP, of D:

L

DP =
par’

(2.5)
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where p is the plastic multiplier and f the yield function. As commonly done, a traceless stress-like tensor a,
the back stress, is introduced to characterize the hardening behaviour. Then the yield function f is for-
mulated as an isotropic scalar function of the stress T and the back stress a etc. In particular, a yield
function of von Mises type is widely used, which locates the yield surface in the following manner:

f=y\/tr(t —a)’ — \/%Joao =0, (2:6)

where 7’ designates the deviatoric part of the Kirchhoff stress, J; is the volume ratio at yielding, and o is the
initial tensile yield stress.
The evolution equation for the back stress « is of Prager’s form:

& = cDP (2.7)

where c¢ is a hardening parameter.

For continued plastic flow, the stress T must stay on the yield surface. This is guaranteed by the con-
sistency condition f = 0. By using this condition the plastic multiplier p may be determined. Then, a ki-
nematic hardening elastoplastic model with the stress rate t* and a* may be established as follows:

o — 2u  3u
* = 2uD + AlnJI — “F (y:D 2.
T uD + AlnJ TR (x:D)x, (2.8)
o, C 3
x KD, (2.9)

Tt 2u il
where the loading/unloading condition is described e.g. by the Kuhn-Tucker relation
p=0, f<0, and pf=0,

and g, the effective stress, is defined as

=17 —a. (2.10)
Moreover, the Lamé elastic constants A and u are related to v and E by
= E P vE
=Ty T a+wi-2y

Evidently, a choice of the objective tensor rate A~ defines a kinematic hardening elasto-plasticity model of
the above type. There are many (actually infinitely many; see, e.g., Xiao et al., 1998a,b) possible choices for
the former. Earlier, a common choice was the well-known Zaremba-Jaumann rate

A=A+ AW - WA

with the vorticity tensor W, the antisymmetric part of the velocity gradient. However, Lehmann (1972a,b),
Dienes (1979) and Nagtegaal and de Jong (1982) disclosed that elasto-plasticity and hypoelasticity models
with Zaremba—Jaumann rate predict oscillatory shear stress responses with increasing shear strain. These
spurious oscillation phenomena prompted reexamination of basic aspects underlying large strain elasto-
plastic models, including the validity of the decomposition (2.1), the definition of an appropriate stress rate
7, etc. In the latter aspect, several stress rates have been taken into account. Among them are Oldroyd rate,
Cotter—Rivlin rate, Truesdell rate, and Green—Naghdi rate, etc. Elasto-plasticity models with these stress
rates have been examined and compared for finite simple shear responses and other responses in order to
test their reasonableness and applicability (see the relevant references mentioned before).

The above situation becomes rather complicated due to the following fact: it seems not easy even to
establish whether a given model is reasonable or not in a full sense, let alone consider and compare the
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infinite many possible models, as pointed out before. Very recently, an attempt has been made to clarify this
situation. The present authors (Bruhns et al., 1999; Xiao et al., 1999) have introduced the following self-
consistency criterion necessary for any reasonable elasto-plasticity model: For every process of purely elastic
deformation, i.e. for D = D¢, the commonly used hypoelastic equation (2.2) intended for elastic behaviour
must be exactly integrable to really deliver a hyperelastic relation. In the just-mentioned references it is
proved that, among all Eulerian rate type elasto-plasticity models with all infinitely many corotational
stress rates and other known stress rates, only those with the logarithmic rate '°¢ fulfil the just-stated self-
consistency criterion (Xiao et al., 1997a, 1998a,b). For the models of the form (2.8) and (2.9), this fact
results in the unique self-consistent kinematic hardening elasto-plasticity model (cf. Egs. (93), (94) and (96)
in Bruhns et al., 1999; note that the total volumetric deformation is elastic):

E
-~ 1 2.11
tre T~ nJ, (2.11)
o — 2u 3u
log — 2D + AInJT — —(y:D 2.12
T uD + Zln c+2u]§ag(x )%, (2.12)
e _ €30 2.13
o C+2‘u._](%0%(x' )Z, ( . )

where the logarithmic rate Al°¢ of a second-order symmetric tensor A is defined by

Al® = A 4+ AQE _ QlEp (2.14)

with the logarithmic spin

Qe = (1, 2 B,DB 2.1
_W+; 1_};7_?4‘@ - - (5)
Here and in Eq. (3.6) given later, by, ..., b, are the distinct eigenvalues of the left Cauchy—Green tensor
B =FF" and B, ..., B, the corresponding subordinate eigenprojections of B. An explicit basis-free ex-

pression for Q'°¢ can be found in Xiao et al. (1997a, 1998a,b).
We conclude this section with a useful relation concerning the logarithmic rate. The second-order
skewsymmetric tensor R'°¢ defined by the tensorial differential equation

@ — _Rloglos (2.16)
with the initial condition

(R°®)] =1 (2.17)
is called the logarithmic rotation. The following relation holds (see, Bruhns et al., 1999):

ROEk A — (RPERA). (2.18)
In particular, we have

R"$%D = (R“%InV). (2.19)
In the latter, In V is the Hencky’s logarithmic strain that will be defined by Eq. (3.6). Here and henceforth,

RP5 %A = REA(RP2)".
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3. Large torsion and large simple shear deformations

Consider a cylindrical tube with the average radius R and the thickness J. Let the two ends of the tube be
fixed. With the torque M at the two ends applied, each cross-section of the tube under consideration will be
twisted through an angle along its central axial line. The angle of twist per unit length is denoted by .

There are lower and upper limits M; and M, for the torque M. When the applied torque M does not
exceed the lower limit M, the whole tube will be in the elastic state. For a torque M; < M < M,, an elastic—
plastic boundary surface will divide the tube into two parts: the outer part is plastically deformed, while the
inner part remains in the elastic state. Once the torque M exceeds the upper limit M,, the whole tube will be
in the plastic state.

Generally, it does not appear to be easy to determine the stress components in the tube at large torsion.
However, when the thickness 0 is very small, in a sense of approximation the stress and strain states in the
whole tube may be assumed to be homogeneous and represented by those at the mid-surface of the tube.

With the above approximation of homogenization the whole thin-walled tube undergoes simple shear
deformation. As a result, the large torsion problem of thin-walled tubes with fixed ends is reduced to the
large simple shear problem of thin rectangular plates. The latter will be treated below.

Choose a fixed Cartesian rectangular coordinate system (O, X;, Xz, X3) in the mid-plane of a rectangular
plate with the origin O a corner point of the mid-plane and the fixed X;-, X5- and X;-axes along the di-
rections of two edges and the normal direction of the mid-plane, respectively. To correspond with the
torsion of the aforementioned cylindrical tube, one may regard the plate to be a small element cut out of the
tube in such a manner that the X;-axis and X;-axis are along the central axial line of the tube and the radial
direction of the tube. The simple shear deformation of the plate is described by

X = (X +pXo)er +X0e; + Xzes. (3.1)

In the above, (e, e,,e;) are three orthonormal vectors along the three fixed coordinate axes mentioned
before, and X = Zf:l Xe; and x = Z?Zl x;¢; are the initial and the current position vectors of a material
particle in the plate. Moreover, the shear strain v is related to the angle of twist, Y, by

7 =Ry (3.2)
The left Cauchy—Green tensor B is of the form
B=(1+7)e;®e +y(e;Qe;+e;Re) +e @e +e;Qe;. (3.3)
The eigenvalues of B are as follows:
bi=Q2+7+yv4+97)/2,

by =2+ —p/4+2)/2=b", (3.4)
by = 1.

The volume ratio is given by
J =+/bibyb; = 1. (3.5)

Hencky’s logarithmic strain In'V is defined as follows:
InV =3 (In/b,)B,. (3.6)
g=1

For simple shear deformation we have (cf. Xiao et al., 1997b)

_ll’lbl —ll’lbz

bl lnbz — b2 In b]
2(by — by)

InvV
2(by — by)

(B—e3®e3)+ (I—e3®e3).
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Hence,
InV = sh_o (wer®e —e;®e) +te@e+e;Re) (3.7)
- \/1+—a)2 1 1 2 2 1 2 2 1) .
Here and henceforth
Y
== 3.8
w 2’ ( )

and sh™'w is used to represent the inverse hyperbolic sine function of , i.e.
sh™'ow =In(w + V1 + ?).
The stretching D and the vorticity tensor W are given by
D=d(e;®@e;+e®e), (3.9)
W=0(eRe —e Re). (3.10)
For the simple shear deformation (3.1), the log-spin Q'°¢ is of the form

Qlog _l(,l)( 1 + ®
2 1+ 1+ w’sh '

The process of the simple shear response is simple: the elastic response with DP = 0 starts at w = 0 and
ends at a yield point w = @y and then follows the elastic—plastic response with DP # 0 for all w = wy. The
two stages will be discussed separately in the succeeding sections.

>(e1®e2—ez®e1). (3.11)

4. The elastic response and elastic—plastic transition

For the elastic stage, both the elastic—plastic strain rate D? and the plastic multiplier p vanish. Hence, the
rate constitutive equations (2.11)—(2.13) are reduced to the hypoelastic equation with the logarithmic stress
rate

798 — JInJ1 4 2uD. (4.1)

It is known that the Eulerian strain rate D is exactly expressible as the logarithmic rate of Hencky’s log-
arithmic strain measure In V defined by Eq. (3.6), i.e., the rigorous kinematical relation (see, e.g., Xiao et al.,
1997a, 1998a,b)

D=InVeE =V + (InV)Q° — Q % (In V) (42)

holds. Utilizing Eq. (4.2) and the relations (2.18) and (2.19), we deduce that the application of the loga-
rithmic stress rate 7'°¢ makes the hypoelastic equation (4.1) to be integrable exactly to deliver a finite hy-
perelastic equation characterized by a linear relationship between the Kirchhoff stress ¢ and the Hencky’s
logarithmic strain measure In'V, i.e. (see Xiao et al., 1997a,b for detail)

t=(InJ)I+2uIn V. (4.3)

The latter is exactly the finite elastic relation discussed and advocated by Anand (1979, 1986). In the
comprehensive and convincing study made in the just-mentioned references, it is demonstrated that
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Eq. (4.3), and accordingly its equivalent rate form (4.1), should have applicability for a wide class of
materials for moderately large deformations. Further properties of Eqgs. (4.1) and (4.3) are indicated in
Bruhns et al. (2000).

It follows from Egs. (3.5) and (3.7) that the elastic response is given by

T sh™'w

—=InV=—r—(0(e;Qe; —&0¢€)+e Qe +e Rep). 4.4

2 m( (e 1 ) ® €)) 1 2 2 1) (4.4)
Thus, we have

Ezﬂ (4.5)

2 1T+ w?’ '

Ti1 = — T = W1T)2. (4-6)

The above elastic response starts at @ = 0 and concludes with the yield condition (2.6) fulfiled, i.e.

1
7%2 + 7%1 = §‘737 (4.7)

which corresponds to the yield point w = w,y. Using the expressions (4.5) and (4.6), we infer that w, is
determined by

3
@y = sh Vo (4.8)
6u
Throughout, shw and chw are used to represent the hyperbolic sine and cosine functions of w. Let further
T?/ = Tij|w:um' (49)
Then we have the non-vanishing stress components
0 (o) 1
Ty =—m ——————— (4.10)
¥ V3 ch(V300/6p)
Y = —15, = wot),. (4.11)

5. The elastic—plastic response
5.1. The governing equation

During loading, and for @ > w,, plastic flow occurs governed by the yield condition (2.6) and the rate
equations (2.11)—(2.13). Decomposing the stress 7 in the form

1
1:a+x+§(trr)l (5.1)

and utilizing Egs. (3.5), (3.6) and (3.9), from Egs. (2.11)—(2.13) we derive the following governing equation
for plastic flow:

trr =0, (5.2)
4p .

Jotlog =2uD — = (@112)1, (5.3)
0
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o 1 o

a% = ¢ <D — ﬂrlog> (5.4)
The initial conditions for plastic flow are given by Eqgs. (4.9)—(4.11) and

a'w:wo - 0 (55)

In what follows we shall work out the solution of Egs. (5.2)-(5.4) with the initial conditions at the
elastic—plastic transition.

First, we treat Eq. (5.4) with Eq. (5.5). Utilizing the relations (2.18) and (2.19), we recast Eq. (5.4) in the
form

(R ka) = c(R* % InV) — zi (R™ % 7).
u

Then, using the initial condition (5.5) we derive

(RS % at)|”

g

- (Rlog * In V)|mo - 27 (Rlog *1 )‘mo
u

for linear hardening, i.e., for a constant ¢. Hence, by using the latter and (4.4), at w = wy, we obtain

a_c<an—11>
2u

Thus, from the latter and Eqgs. (5.1) and (3.5) we derive

= 2ulnV — 5.6
a= 5. unY ) (5.6)
for o = w,. In Eq. (5.6), the logarithmic strain In'V is given by Eq. (3.7) and the effective stress g (cf. Eq.
(2.10)) is determined by Eq. (5.3) and the initial condition at the elastic—plastic transition.
Next, we treat Eq. (5.3) for the effective stress 3. Owing to Eq. (3.5), the Kirchhoff stress 7 is equal to the
Cauchy stress ¢ and of the form

T=T16 Q€ + e ¥ e +1p(e; ®e, +e;Re) — (T + T)e; @ e,

The back stress « and therefore the effective stress y are of the same form. Substituting the above form and
Egs. (3.9) and (3.11) into Eq. (5.3) and using 7;; = a(dy;/dw), for @ > w, we obtain the coupled system of
differential equations

dy 6u

d—u])l*g(a))){lz = *0_—%%12)(11» (5.7)
dy 6u

d—ciz"'g(w)llz = _6_%)(12}(22» (5-8)
dy 1 6u

dci)z + Zg(w)(ln — ) = 2u— o2 /{%27 (5.9)

0o

d(xn +« 6u
% 2 220 + 122)s (5.10)

with the following initial conditions (cf. Egs. (4.10), (4.11) and (5.5)) at the elastic—plastic transition

_ .0
= Tip

ij=11,22,12. (5.11)

il
ijlo=wm
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In Egs. (5.7)-(5.9), we have introduced
() = 1 n w
8O = T VIi+w’sh'o

From Eq. (5.10) and the initial value 0, + 3, = 0, we deduce

(5.12)

It rn=0, ile 1»n=-xn- (5.13)

Incorporating the above facts, from Egs. (5.7)—(5.10), (4.10) and the yield condition (4.7) we derive a single
governing equation for the effective stress y as follows:

dy 1 6u
d—af+g(w)\/§0%—x%z:2uf;§x?2 (5.14)

with the initial condition

1
0 () \/§O'()
' = = — h . 1
Y12l = Tia \/§<C 6 > (5.15)

Once the shear component y, is known, the other non-vanishing components are obtained by

/1
A= —Xn = 3@2) - X%r (5.16)

5.2. A singular perturbation solution

It seems to be not easy to derive a closed-form solution for the nonlinear ordinary differential equation
(5.14) with the prescribed initial condition (5.15). In fact, with the transformation

)

A = cos 0, 5.17

212 /3 ( )
and accordingly (cf. Eq. (5.16))

gy .
= —yyp =—=sinb, 5.18

1 222 /3 ( )
Eq. (5.14) with Eq. (5.15) is recast in the form

S—Z + (2V3u0; ") sin 0 = g(w) (5.19)
with

-1
3
0], = COS™' <ch \glfo) (5.20)

A further transformation can show that Eq. (5.19) is a Riccati equation for which no closed-form solution
can be derived. However, the elastic shear modulus u is usually much greater than the tensile yield strength
ao for metals and alloys etc. This suggests that an approximate analytical solution for the problem at issue
may be obtainable. Indeed, introducing the dimensionless material parameter

_\/§60
€= o1

: (5.21)
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Eq. (5.19) may be reformulated as

do .
o +sin 0 = eg(w) (5.22)

1
_ -1
H‘w:sh( = COs (Ché) . (523)

The order of magnitude of the dimensionless material parameter € usually falls within 1072-10~*. Thus, it
becomes clear that Eq. (5.22) is a first-order ordinary differential equation of singular type with a small
parameter ¢ multiplying the highest derivative. Moreover, the small parameter € is also involved in the
initial condition (5.23).

We may introduce a small interval, called boundary layer, at the point @ = w, = she. The exact solution
of Eq. (5.22) changes very quickly within this layer and normally beyond it. We shall apply the method of
matched expansions (see, e.g., Nayfeh, 1973) to derive a singular perturbation solution for Eq. (5.22).
According to this method, an outer solution 0°, which applies beyond the boundary layer, and an inner
solution ¢, which is valid within the boundary layer, are determined separately, and then a composite
solution is formed by a matching procedure. This will be done as follows:

First, we express the outer solution 6° as the asymptotic expression

0° =0y + €t +---.
Then, substituting it into Eq. (5.22) and expanding all functions involved as Taylor’s series in terms of €, we
derive

sinfy =0, 0] =g(w),
etc. Hence, we have

0° = eg(w) + O(). (5.24)

Evidently, the above solution does not satisfy the initial condition (5.23). This issue will be treated below at
wy = she by considering the inner solution 0'. _
Second, in order to determine the inner solution ', we magnify the boundary layer by using the
stretching transformation
—sh
o =22 (5.25)

€

With this transformation, Egs. (5.22) and (5.23) become

i

d :
st sin 0' = eg(e® + she) (5.26)

with
' h
0'], = sin”' (%) (5.27)

In deriving the latter, the identity cos ' x = sin"' v/1 —x2 is used. Then, substituting the asymptotic ex-
pansion

0" = 0,(®) + €0y (@) + - --
into Egs. (5.26) and (5.27), utilizing different Taylor’s expansions

g(e@ + she) =2+ 1E¢"(0)(1 + @)* + - --
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and then equating the coefficients of ¢ for all s to zero, we derive perturbation equations for Qi = 01(6)) The
first two equations for s =0, 1 are
do, . ;
d—d‘;+ sinfy, =0, 0y],_, =0,
i

di_; + 6 cosb =2, 6|._,=1.

Hence, we have
0' = €(2 — exp(—@)) + O(?). (5.28)
Third, we consider the following matching condition for the outer and inner solutions ° and 6':

lim ¢'(®) = lim 6°(w) = constant = a.
D—+00 w—+she

It may readily be shown that the above condition is satisfied and
a = 2e.
Thus, the composite solution is given by
0=0"+0—a=e(g(w) —exp(—d)) + O(?). (5.29)

From the latter and Egs. (5.12), (5.17) and (5.18) we obtain the following solutions for the nonvanishing
components of the effective stress y:

0o 1, —\\2 3
=% (1= 38(e(0) -~ exp( - 0))*) + 0(E), (5.30)
=~ = %e(g(w) — exp(—@)) + O(¢"). (5.31)

From the above solutions and Egs. (5.6) and (3.7), we can obtain the different components of the back
stress o, and finally we arrive at the nonvanishing stress components

_27’“ ﬂ _162 W) — — 2 Cﬂ 63

T12—6+2u{\/§<1 7€ (8(@) —exp( ))>+ m}+0< ), (5.32)
=T _27/1 26 ) — — @ cm 63

= 2z—c+2ﬂ{ﬁ (g(w) —exp(— @) + m}+0( ). (5.33)

6. Analysis: the coupling effect of material properties

The stress-deformation responses, i.e. here, the 71,—w and 7;;—w curves, are characterized by the coupling
of elastic, yielding and hardening properties. This coupling effect may be studied for general material
parameters u, gy and ¢ by analyzing the analytical solutions (5.32) and (5.33). Towards this goal, we
evaluate the derivatives of the plastic solutions (5.32) and (5.33), which are given by

1 d‘L']z 1 COShil(JJ gy - _ , 1 _
= c<1 i w)) - The(elo) — exp(-0)(¢ () + ¢ ' exp(-a)) (61)
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1 d’Cll N w sh’lw (4} ’ 1 _

where = 2u/(c +2u) and
glo)=E o 2 ( 2t ) (63)

Tdo (1+0)Psh'o 1T+ \1+0” " (shlw)’

and @ and g(w) are given by Egs. (5.12) and (5.25).

Given the elastic shear modulus 2y, the initial yield stress oy and the hardening modulus ¢, we need to
know how the stresses 7|, and 7y, respectively, change with the increasing shear strain . This can be done
by judging the sign of the derivatives given above. Several cases will be discussed below.

6.1. Elastic-perfect plasticity

In this case we have ¢ = 0 and thus Egs. (5.32) and (5.33) yield

=7 (1= 36 et0) - exp(~ ) ). (6.4
T = —Tp = %e(g(w) —exp(—®)), (6.5)
and Egs. (6.1) and (6.2) produce
T = = (o)~ exp(-0) (¢ (o) + ¢ exp(-a), (66
dun _ ﬂe(g’(w) + e Lexp(—)). (6.7)
do /3
It can be proved that
g(w) —exp(—®) >0, o> wy. (6.8)
Moreover, there is one and only one root @ = w), > wy satisfying the equation
g (o) + e exp(—a) = 0. (6.9)
The unique root ), > wy is close to € and of the same order of magnitude as —elne, i.e. (for ao/2p1 = 0.05)
wy = 0.1576.
We have

dz dr "
{d—ul)l<0and W >0 forwm <w <o, (6.10)

drpy dryy m
2>0and G <0 for w > -

Thus, starting with the initial yielding the shear stress 7;, (resp., the normal stress 7;;) drops (grows) to a
minimum (maximum) at w7 and after that slowly grows (drops) to the rigid-plastic value oo/ V3 (resp., 0).
These properties are shown in Figs. 1 and 2, wherein as an estimate for a theoretical upper limit we have
introduced

(o) o
T 0.05.
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Fig. 1. Elastic-perfect plasticity: normalized shear stress vs shear strain .
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Fig. 2. Elastic-perfect plasticity: normalized axial stress vs shear strain w.

In these figures the full lines describe the Runge—Kutta solution of the original system (Eqgs. (5.14)—(5.16)),
whereas the closed-form expressions for the shear stress 7;, and the normal stress 7;; according to Egs. (6.4)
and (6.5) are given with dotted lines. It turned out that the exact solutions and the perturbation solutions
are almost identical — even for the extremely high value of ¢, under consideration. In Fig. 1, where the shear
stress 7y, is indicated, both solutions coincide within the accuracy of our presentation. The magnification of
Fig. 2 (and Fig. 8, given later) is needed to discover however, a small deviation of both solutions. Therefore
it seems to be admissible that the analytical perturbation solution can be taken as solution of the underlying
simple shear and torsion problems.

The above analysis also shows that within the boundary layer (w,, ") appears a slight instability

immediately following initial yielding. This phenomenon was observed bypidoss (1984) and later further
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discussed in detail by Tsakmakis and Haupt (1989). It may be expected that a similar phenomenon will
occur whenever the hardening is weak enough. This will be discussed later.

6.2. Kinematic hardening rigid plasticity

In this case the shear modulus 4 — oo, and consequently Egs. (5.32) and (5.33) collapse to

sh™'w

T12 —7§+Cﬁ, (611)
wsh™'w
T = —Tpn = C\/T—aﬂ’ (612)
and Egs. (6.1) and (6.2) to
-1
dno (L osh o ) (6.13)
do 1+ w? (1+a)2)]'5
dryy w sh™'w
dw_c<1+w2+(l+w2)l‘5 | (49

The former has one and only one zero point = wf,, determined by

\/1+w2—wln<w+ 1+w2):0, (6.15)

1.€.,

off = 1.5088. (6.16)
We have

d d

%>0 for my < <o, and %<O for w > ayp, (6.17)

and evidently,

d’L'11
— >0 for o > wy. 6.18
dw 0 ( )
Thus, the normal stress 7,; invariably grows with increasing shear strain @ > ,. Starting with its initial
yield value a,/+/3 the shear stress t;, grows to its upper bound 77, at wy, and after that drops back as a limit
to its initial yield value ¢, /+/3 with » growing unlimited. The upper bound, i.e., the shear strength, is given
by

g \/§ Cc .
T =—|14+— — | =0.57730¢ + 0.6627c. 6.19
g \/§< o, 00) ° (1%

The normalized shear stress—shear strain and axial stress—shear strain curves are shown in Figs. 3 and 4.
As before the exact solution and the perturbation solution agree extremely well.
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Fig. 3. Kinematic hardening plasticity: normalized shear stress vs shear strain , with normalized hardening parameter v/3¢/a = 0.6.
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Fig. 4. Kinematic hardening plasticity: normalized axial stress vs shear strain o, with normalized hardening parameter v/3¢/a, = 0.6.

6.3. Kinematic hardening elasto-plasticity

In this general case, both the 7;,—w and 7;;—w curves will manifest themselves in a more complicated
manner due to the coupling effect of elastic, yielding and hardening properties. In what follows, a detailed
analysis of this coupling will be made. Towards this goal, we evaluate the derivatives given by Egs. (6.1) and
(6.2).

First, we consider the shear stress 7;,. When o falls within the boundary layer (w,, w!’;,), the first term of
Eq. (6.1) is positive and the second negative. In this case, the sign of the derivative (6.1) depends on whether
the hardening is weak or strong. We have
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- ﬁ(c—ﬂe) +0(&), ?

Then, it may be proved that, within the foregoing boundary layer, the derivative dt;,/d® has one and only
one zero point wjy, whenever \/§c/ao —e<0,1e.,

> 0.

_ —
w=awy o=y,

0.2
c< 2, (6.20)
ou
whereas the derivative dti,/dw is positive and has no zero point, whenever
2
o
c> 2.

On the other hand, when w leaves the boundary layer, the exponential function exp(—@®) more rapidly
approaches zero than any ¢ with » > 0 and hence may be negligible. In this case, the zero points of the
derivative dtj,/dw are determined by

\/gai (\/ 1+ —wl (w +v 1+ w2)> = g(w)g (0)(1 + ?)". (6.22)

0

(6.21)

It can be proved that Eq. (6.22) has one and only one root, w}}, for any given material parameters ¢ > 0 and
¢ > 0. Usually, € is much smaller than v/3¢/ao. As a result, this unique root o} is very close to Wp-

Combining the above discussion, we describe the property of the 71,—w curve as follows. If the hardening
is weak as indicated by Eq. (6.20), then, immediately following the initial yielding over a very thin layer
(o, ®},) the shear stress 7;, drops to a value slightly smaller than its initial yield value, after that grows to
its maximum at o = o}, and finally drops to as a limit the rigid plastic value o/ /3. This is shown in Fig.
5, where here we have introduced

V3c

—— =0.022.
g9

VER IS

1.02 —

1.01 |

1.00 —

[0
0.00 T T T T T T
0 1 o5 2 3 4 5 6

Fig. 5. Coupling effect with Eq. (6.20): normalized shear stress vs shear strain o, with normalized hardening parameter v/3¢/ay = 0.022
and the zero point o} = 1.5931 from Eq. (6.22). The dashed line marks the value of normalized shear stress 7, at the limit for infinite
strain o.
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Fig. 6. Coupling effect with Eq. (6.21): normalized shear stress vs shear strain o, with normalized hardening parameter v/3¢/ay = 0.2
and the zero point w}; = 1.5183 from Eq. (6.22). The dashed line marks the value of normalized shear stress 7;, at the limit for infinite
strain o.

If the hardening is strong enough to satisfy Eq. (6.21), then starting from the initial yielding the ;-
curve will manifest itself in the same manner as in the case of kinematic hardening rigid plasticity, except for
the fact that the maximum point wj, of the latter is replaced by a slightly greater one, i.e., »f;. This is shown
in Fig. 6, with

Ve _

[0

0.2.

From the above, the kinematic hardening elasto-plasticity model with logarithmic rate predicts that,
when the increasing shear strain w arrives at a critical point o}, determined by Eq. (6.22), which is very
close to of, the shear stress 7y, attains its maximum 17, and after that instability phenomena may occur. It
is noticed that this prediction is in agreement with experimental results reported by, e.g., Billington (1976).
In the just-mentioned reference, the reported shear strains }; at which instability occurs are about 1.4, 1.3
and 1.5, respectively, for thin-walled specimens of aluminum alloy, copper and iron.

Now we consider the axial (normal) stress 7;;. Since the inequality (6.18) with Eq. (6.14) holds, the
derivative dt;;/dw given by Eq. (6.2) has the same sign as the function

Flo) = 2 V@) (6.23)

o ()

w sh™'w
= + 15"
1+ (1+w)"

V(o) =g (0) + € exp(-a), () (6.24)

The possible zero point of the derivative F'(w) is determined by the equation
W(G)i)(ﬁ(wi) - lp(wi)d)/(wi) =0. (6.25)

It may be proved that there is one and only one zero point o; satisfying the above equation for a small
e > 0, and that at this unique zero point the function F(w) attains its minimum
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buc ()
Flw)=—+ . 6.26
(@) 0(2) ¢ () ( )
Thus, it becomes clear that the derivative dt;;/dw is nonnegative, whenever F(w;) > 0, i.e.,
2
0y ()
c>=> —— , 6.27
6u 4’(@[) ( )

whereas the derivative dr;;/dw has one local maximum point @} and one local minimum point Y de-
termined by

Wo) e (629

P (o) 0p
whenever F(w;) <0, i.e.,

c< — ‘7_5 Y ()
61 ()

Combining this discussion, we describe the property of the 7;;— curve as follows. If the hardening is
strong enough to satisfy Eq. (6.27), then the normal (axial) stress 7;; grows invariably with increasing shear
strain. If the hardening is not so strong, as indicated by Eq. (6.29), then the stress 7;; grows to a local
maximum at oY, after that drops to a local minimum at ¥, and finally slowly grows to infinity with the
shear strain growing to infinity. In the latter case, the two turning points o} and o} are determined from
Eq. (6.28). These properties are shown in Figs. 7 and 8, where the different normalized hardening pa-
rameters are the same as before, 0.2 in Fig. 7 and 0.022 in Fig. 8, respectively.

Again, both solutions agree extremely well, which can be seen from Fig. 8, where the dotted line gives the
71— curve from the perturbation solution.

Experimental axial stress—shear strain curves have been reported by Montheillet et al. (1984) for Al at
room temperature (20°C) and a strain rate of 0.007 s~! and at other cases. It may be seen that the theo-
retical curve shown in Fig. 8 is qualitatively in a good agreement with the just-mentioned experimental
curves. Quantitative simulation may be achieved by choosing suitable material constants. It should be

. (6.29)

03 T1/Op

0.2 H

0.1 +

0.0 T T T T T T
0 1 2 3 4 5 6

Fig. 7. Coupling effect with Eq. (6.27): normalized axial stress vs shear strain , with normalized hardening parameter v/3c/a, = 0.2.
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Fig. 8. Coupling effect with Eq. (6.29): normalized axial stress vs shear strain o, with normalized hardening parameter v/3¢/ay = 0.022
and extreme points o} and w4 from Eq. (6.28).

pointed out that comprehensive simulations of experimental results were successfully made by Ning and
Aifantis (1994a) and Cho and Dafalias (1996) and others, by utilizing models with multiple plastic spins
and internal variables. The latter usually incorporate a large number of non-classical material parameters.
The simple model considered here uses essentially nothing but commonly known classical material con-
stants, i.e., the shear modulus g, the initial tensile yield stress oy and the hardening modulus c.

7. Discussion

In the previous sections, the kinematic hardening J,-flow model with the logarithmic tensor rate, pro-
posed in Bruhns et al. (1999), is applied to study the large simple shear and torsional deformation be-
haviour in elastoplastic bodies such as metals etc. One of the main features of this model as consequence of
the logarithmic rate involved is the direct integrability of parts of the constitutive (differential) equations.
Combined with a singular perturbation solution analytical forms are obtained which turned out to be
almost identical with the exact results from a Runge-Kutta integration. This allows a detailed study of the
meaning and coupling effects of the different material properties. For the deformation modes at issue, it is
shown that the simple model proposed, which essentially uses nothing but the three classical material
constants, i.e., the shear modulus p, the initial tensile yield stress oy and the hardening modulus ¢, may
supply satisfactory explanations for salient features of complex behaviour observed in experiment. This
may suggest the utility and efficacy of the logarithmic tensor rate. In fact, similar models with other ob-
jective tensor rates could not arrive at satisfactory explanations for experimental observation, as pointed
out by Reed and Atluri (1985).

There are several possibilities to generalize a simple model of the kind at issue. These include the in-
troduction of a general (possibly anisotropic) yield function, extension of the flow rule and development of
Prager’s kinematic hardening law, as well as incorporation of isotropic hardening, etc. The recent models
with an evolving anisotropic flow rule or an anisotropic yield surface or multiple plastic spins etc., proposed
in Majors and Krempl (1994), Ning and Aifantis (1994a,b), Cho and Dafalias (1996), Dafalias (2000),
Kuroda (1997, 1999), and Kuroda and Tvergaard (2000), are more general and able to simulate in a
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comprehensive manner complex behaviour such as axial effect during reversal of torsion, etc. Usually, a
more general model may incorporate more material parameters. Their physical explanation and identifi-
cation requires further investigation in both experimental and micromechanical aspects.

In order to approach more practical problems the logarithmic rate actually is implemented into a finite
element code. This implementation will include generalizations like those cited in the foregoing paragraph.
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